On the accuracy of finite element approximations to a class of interface problems
نویسندگان
چکیده
The jump is defined as [∇u · n] = ∇u · n +∇u ·n where u = u|Ω± and n is the unit outward pointing normal to Ω (see figure 1). Also, we denote [u] = u − u. Many numerical methods have been developed for problem (1.1). Perhaps the most notable ones are the finite difference method of Peskin [18] (i.e., immersed boundary method) and the method of LeVeque and Li [11] (i.e., the immersed interface method ; see also the method of Mayo [14, 15, 16]) .The method of LeVeque and Li [11] was developed for the more general problem with discontinuous diffusion coefficients, while the method of Peskin [18] was developed for fluid flow problems with an immersed boundary. Although the method of Peskin [18] is formulated with a force function F that incorporates the elastic force of the immersed boundary Γ, it was shown in [19] that it can be re-formulated as an interface problem (with α = 0) where β encodes the elastic force. Since the two important papers [18, 11] there have been many articles extending or improving these methods. In particular, finite element versions of these methods have appeared; see for example [3, 9, 6, 2]. For the above problem (α = 0), it is well known that the method of Peskin [18] is only first-order accurate whereas the method of LeVeque and Li [11] is second-order
منابع مشابه
Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method
The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملTime-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions
This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...
متن کاملOn the Displacement-Stress Continuous Finite Elements
For the analysis of composite media, three different compatible and mixed finite element formulations are presented which apriori enforce the continuity of stresses as well as displacements at the element interfaces. The formulations are applied for the analysis of hi-material interfaces in two problems often encountered in the field of orthopaedic biomechanics, that is the fixation analysis in...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 85 شماره
صفحات -
تاریخ انتشار 2016